
Institute of Architecture of Application Systems 

Transforming Collaboration Structures into
Deployable Informal Processes

C. Timurhan Sungur, Christoph Dorn, Schahram Dustdar and Frank

Leymann
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany

http://www.iaas.uni-stuttgart.de

in: Proceedings of the 15th International Conference, ICWE 2015, Rotterdam, The Netherlands,
June 23-26, 2015..

See also BibTEX entry below.

BibTEX:

@inproceedings {INPROC-2015-53,

author = {C. Timurhan Sungur and Christoph Dorn and Schahram Dustdar and Frank Leymann},

title = {{Transforming Collaboration Structures into Deployable Informal Processes}},

booktitle = {Proceedings of the 15th International Conference, ICWE 2015,

Rotterdam, The Netherlands, June 23-26, 2015.},

publisher = {Springer International Publishing},

institution = {Universit{\"a}t Stuttgart, Fakult{\"a}t Informatik,

Elektrotechnik und Informationstechnik, Germany},

series = {Lecture Notes in Computer Science (LNCS)},

volume = {9114},

pages = {231--250},

type = {Konferenz-Beitrag},

month = {Juni},

year = {2015},

isbn = {10.1007/978-3-319-19890-3_16},

keywords = {Informal process essentials; Human architecture description language;

Wiki; Collaboration configuration; Transformation},

language = {Englisch},

abstract = {Traditional workflow and activity-centric coordination offers limited process

support to human collaborators when unanticipated situations predom- inate.

Under such circumstances, informal processes focus on provisioning relevant

resources for achieving collaboration goals. Resources include interaction

mechanisms such as shared artifact, social networks, and publish/subscribe

information dissemination as complex situations typically demand the close

collaboration among multiple human process participants. Currently, however,

there exists a gap between (i) selecting and configuring suitable interaction

mechanisms (collaboration level) and (ii) deploying the respective

collaboration platforms (IT level). In this paper, we present an approach and

techniques for transforming collaboration structures into automatically

deployable informal processes. We demonstrate how our tools support the

specification of desirable collaboration capabilities subsequently deployed to

multiple MediaWiki instances.},

url = {http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2015-53&engl=0}

}

© copyright by the author(s)



Transforming Collaboration Structures into Deployable
Informal Processes

C. Timurhan Sungur1, Christoph Dorn2, Schahram Dustdar2, and Frank Leymann1

1 Institute of Architecture of Application Systems
University of Stuttgart, Germany

lastname@iaas.uni-stuttgart.de
2 Distributed Systems Group, Vienna University of Technology

{dorn,dustdar}@dsg.tuwien.ac.at

Abstract. Traditional workflow and activity-centric coordination offers limited
process support to human collaborators when unanticipated situations predom-
inate. Under such circumstances, informal processes focus on provisioning rel-
evant resources for achieving collaboration goals. Resources include interaction
mechanisms such as shared artifact, social networks, and publish/subscribe infor-
mation dissemination as complex situations typically demand the close collabo-
ration among multiple human process participants. Currently, however, there ex-
ists a gap between (i) selecting and configuring suitable interaction mechanisms
(collaboration level) and (ii) deploying the respective collaboration platforms (IT
level). In this paper, we present an approach and techniques for transforming
collaboration structures into automatically deployable informal processes. We
demonstrate how our tools support the specification of desirable collaboration
capabilities subsequently deployed to multiple MediaWiki instances.

Keywords: Informal Process Essentials, human Architecture Description Lan-
guage, Wiki, collaboration configuration, transformation

1 Introduction

Organizational processes range from ad-hoc activities to rigorously-defined workflows
[19]. As flexibility and adaptation is required for unforseen situations, humans tend to
execute most activities in those less well-defined processes—denoted in this paper as
informal processes. With fewer a-priori specified flow conditions, however, comes the
need for supporting coordination and collaboration among human process participants.
Informal processes are hence inherently human-centric. Here, the traditional process
modeling primitives (i.e., elements for tasks, control flow, data flow, etc) are often no
longer suitable [30, 15]. Other interaction dependency management patterns [17] such
as Shared Artifact, Social Network, Secretary/Principal, Master/Worker, or Publish/-
Subscribe become increasingly relevant. Collaboration patterns allow modeling how
multiple humans interact through messages, artifacts, requests, etc, rather than having
to express all work efforts by means of assigning a single task to a single process par-
ticipant.



Multiple platforms implement the various collaboration patterns. Facebook and
LinkedIn, for example, realize the Social Network pattern; MediaWiki 3, DokuWiki 4,
and Google Documents realize the Shared Artifact pattern, Twitter the Publish/Sub-
scribe pattern. Informal processes target unforeseen situations and thus require flexible
coordination mechanisms. It is highly unlikely that, for example, a given wiki or social
network platform in its initial, static configuration will remain suitable for all informal
process purposes. We therefore argue that in human-intensive process environments, we
need to treat coordination and collaboration mechanisms as resources that are specif-
ically configured for each process instance. Statically provided collaboration mecha-
nisms cause two types of problems: on the one hand, they may prove too flexible (e.g.,
pure email) and thus cannot properly support the process participants. Participants need
then to execute all coordination actions manually without any monitoring, notification,
protection, or other automation support. On the other hand, static configurations may
lead to overly rigid coordination structures that quickly become inefficient to use or are
abandoned altogether. An example are traditional workflow systems that exactly define
who must do what in which order.

Providing collaboration mechanism as a configurable resource, however, entails a
set of challenges. Typical resource management and provisioning mechanisms focus on
fair, safe, or cheap access by individual clients [27]. Access privileges specify what a
single client may or may not do with a particular resource. Collaboration mechanism
resources, in contrast, are intrinsically subject to simultaneous, correlated use. Further-
more, collaborators enact process-centric roles that need finely-tuned, highly asymmet-
ric usage capabilities (e.g., reading vs. writing, sending vs. receiving). While process
participants are aware of these fine-grained collaboration-level requirements, IT person-
nel managing the actual resource have only insights into how to configure and deploy
the corresponding software.

Our contribution in this paper are a set of models, transformations, and supporting
framework for addressing these challenges. Our approach separates the specification of
collaboration roles [16] from their provisioning details [30]. Along these lines, informal
process participants utilize a collaboration-centric architecture description language for
determining the required roles and collaboration actions for their particular informal
process instance. This specification is tied to implementation artifacts via resource ca-
pabilities. Automatic deployment of implementation artifacts closes the gap between
collaboration and IT level. We demonstrate the feasibility of specifying and deploying
non-trivial collaboration structures based on a use case involving multiple wikis.

The remainder of this paper is structured as follows. Section 1.1 introduces an ac-
companying scenario. We subsequently provide background on applied models and
techniques (Sec. 2) followed by an overview of our approach (Sec. 3). Section 4 de-
scribes the transformation and refinement process for mapping the collaboration spec-
ification to the providing software artifacts and their deployment. We demonstrate and
discuss this procedure within the scope of a validating use case (Sec. 5). Section 6
compares related work to our approach before Section 7 completes this paper with an
outlook on future work and conclusions.

3 http://www.mediawiki.org/wiki/MediaWiki
4 https://www.dokuwiki.org/dokuwiki



1.1 Motivating Scenario

Suppose a research consortium envisions the knowledge collection and dissemination
from project partners as well as the wider research community. Project members are,
however, interesting in keeping preliminary articles on work in progress separated from
stable, generally publishable results. The differences in the expected user base and work
coordination call for significantly different user roles and access permission for each ar-
ticle type. The various ways people collaborate and engage in article authoring, quality
management, commenting, and improving renders futile any attempt to adequately cap-
ture these in a traditional workflow-style model. Such a process model will exhibit rigid
action sequences and inhibit ad-hoc collaboration. In most such environments, custom-
made software is neither an option due to time and/or cost constraints. Resorting to
pre-existing solutions such as a wiki is a step in the right direction. A standard wiki
provides a suitable set of collaboration capabilities but rarely exhibits the right capa-
bility configuration by default. Given the permission model of a typical wiki software
(e.g., MediaWiki), the scenario’s article differences demand two wiki instances, each
configured accordingly (see Fig. 1 left).

One potential configuration for an internal wiki instance may foresee user authenti-
cation even for merely reading articles. Editing and managing roles are kept simple and
to a minimum. Each project participating organization allocates one quality manager
who is also responsible for promoting regular users to editors. Editors obtain generous
editing rights. For example, new articles are automatically approved; quality managers
merely check changes to existing articles for sensitive data from time to time.

The external wiki, on the other hand, needs more sophisticated users groups. Specif-
ically, the configuration needs to balance low entry barriers for consuming and con-
tributing knowledge with measures targeting article spamming, vandalism, and edit
wars. To this end, the wiki might allow anonymous read access, a basic set of edit-
ing rights for authenticated users, extensive editing rights for time-trusted experts, and
separate roles for user management, article patrolling, and article protecting.

The project’s members are only interested in determining the wiki configuration
and understanding its implications at the collaboration level (in contrast to IT level
configuration concerns such as security, persistence, and scalability). The following
sections describe how to operationalize such separation of concerns.

2 Background

2.1 Human Architecture Description Language

The human Architecture Description Language (hADL) [16] provides a collaboration-
centric component and connector view. A hADL model describes the collaboration
structure in terms of the interacting user roles and their available interaction mecha-
nisms. To this end, hADL distinguishes between HumanComponents and Collabora-
tionConnectors to emphasize the difference between the primary collaborating users
and non-essential, replaceable users that coordinate the collaboration. In our motivating
scenario (Fig. 1 far left), project members, project editors, public read, public editor and



Fig. 1: Dual wiki scenario with substructure mapping in schematic hADL.

public expert roles are the HumanComponents. The Wiki Quality Manager and Vandal-
ism Detector roles represent CollaborationConnectors. They aren’t strictly necessary,
but greatly facilitate collaboration. A CollaborationConnector is thus responsible for
the efficient and effective interaction among HumanComponents. It thereby may cover
the full automation spectrum: from purely human, to software-assisted, to purely soft-
ware implemented.

Users employ diverse means of interaction that range from emails, to chat rooms,
shared wiki pages, and Q&A forums, to vote collection. These means implement vastly
different interaction semantics: a message is sent and received, a shared artifact is
edited, a vote can be cast. CollaborationObjects abstract from concrete interaction tools
and capture the semantic differences in subtypes, e.g., Message, Stream, or SharedArti-
fact. In our example, the two Wikis (Fig. 1 mid left) provide collaboration in the form
of a shared artifact, while the Alert notification provides messaging-centric capabilities.
The actual notification mechanism may then be implemented through email, XMPP,
SMS, or even a combination thereof.

Actions specify what capabilities a component or connector requires to fulfill his/her
role, e.g., edit an article or receive an alert message. Complementary, Actions on Col-
laborationObject determine the offered capabilities. To this end, actions distinguish be-



tween Create, Read, Update, and Delete (CRUD) privileges. Action cardinalities further
specify the upper and lower boundaries on the number of collaborators which may si-
multaneously have acquired the action’s capabilities. The Alert Notification Receiving
action, for example, thus demands at least one component or connector having receiving
privileges when exhibiting an action cardinality of (1..*).

Ultimately, Collaboration Links connect HumanComponent and CollaborationCon-
nector actions to CollaborationObject actions, thus wiring up a particular collaboration
structure. The Structure element provides a containment mechanism for complex, hier-
archical CollaborationObjects and interaction patterns composed from the basic hADL
elements. The scenario depicts the use of substructures for detailing the internal struc-
ture of each wiki collaboration object. The parent element references a pre-existing
structure (here the Wiki Base Structure), and provides a mapping between parent ac-
tion (e.g., Internal Wiki - Editing) and substructure action(s) (here Wiki Page - create,
import . . . ) via substructure wires (Fig. 1 center, dashed lines). Multiple substructure
wires between a single parent action and multiple sub actions imply aggregation seman-
tics. Hence, the Internal Wiki editing action aggregates the Wiki Page create, import,
import-upload, Page page-edit, etc capabilities. Likewise, two substructure wires from
different parent actions to the same sub-action imply capability reuse, i.e., both parent
actions make the sub-action’s capability available. The substructure mechanism thus
allows different configuration of the same base structures. Internal Wiki and External
Wiki only need to exhibit the desired substructure wiring without having to duplicate
the Wiki Base Structure.

2.2 Informal Process Essentials

Business process modeling languages, e.g., BPEL [26] and BPMN [2], enable cap-
turing recurring activity patterns in various domains, e.g., manufacturing, health-care,
IT, etc. Consequently, the activities, which frequently occur, can be documented, re-
executed, and further improved. Typically, these activity-oriented process modeling ap-
proaches focus on the repeated activities and their structure. On the other hand, there are
human-centric informal processes which cannot be well-defined using these activity-
oriented approaches as their activities and sequences constantly change. Rather than us-
ing activity-oriented approaches, one captures the essential repeated information using
resource-centric approaches such as Informal Process Essentials (IPE) [30]. The desired
process result may be repeatedly obtained through selection of the same set of resources
(and subsequently engaging them towards the collective goals of informal processes).
IPE’s resource-centric approach follows an agent-oriented style as an IPE model may
specify resources that represent any type of active entities (humans, services, hardware,
etc.) which then work autonomously towards the desired intentions of the respective
informal process. Each IPE model contains the list of necessary resources to accom-
plish the target goal of the corresponding informal process. Each resource may exhibit
various semantical relationships with other resources for specifying complex resource
sets. These resources are typically provided by some services, i.e., resource organizers.
Resource organizers are responsible for resource life-cycle operations of the resources
within the corresponding process scope, i.e., they prepare the resources for the process
execution and they release them upon process completion. Informal process actors are



a special resource type. They work autonomously and make use of all other provided
resources within the scope of their informal process instance. Resource organizers are
added to the respective system on a plug-in basis. Each plug-in is responsible for the
respective resource domain, e.g., a resource organizer plug-in for OpenTOSCA ecosys-
tem. The combination of a domain specific resource organizer and its adapter results
in a pluggable resource organizer. In the scope of this work, whenever we mention a
specific resource organizer, we implicitly include its adapter.

An IPE model describes the the main intention that reflects the informal process’
main goal. Each intention may be refined through sub-intentions that also may serve
as constraints, e.g., “complete the process in one day”. IPE model enactment depends
on conditions in the surrounding execution environment. The IPE model’s initial con-
text specifies the triggers that signal when the model’s corresponding resources should
be initialized and subsequently work towards the informal process’ main goal. Com-
plementary to the initial context, the IPE model specifies the resulting context which
specifies the conditions for determining the processes’ main intention as successfully
achieved. The expression of initial and final context is out of the scope of this work and
will not be further discussed.

Fig. 2: Schematic IPE model of the dual wiki scenario.

Fig. 2 illustrates the IPE Model for the motivating scenario. The IPE’s collaborative
resource specification is derived from the hADL architecture of the scenario. It details
the various human performers who use the Wiki software in terms of their particu-
lar roles and permissions. The resources, that ultimately enact the collaboration roles,
are organized by resource organizers, e.g., IT resources are organized by OpenTOSCA
plug-in communicating with the OpenTOSCA ecosystem which is a cloud application
management and deployment container. The main focus of this work is the transforma-
tion between the hADL model and the resource model of an IPE model. In the following
chapter, we will detail the interplay of hADL and IPE models and the relationships be-
tween them.



3 Approach

hADL models define high-level collaboration structures comprising human compo-
nents, collaboration connectors, and collaboration objects without having to specify
the underlying low-level deployment or implementation details. Instantiation of hADL
models in an organizational context requires mapping hADL elements and their re-
lations to specific, available resources of the respective organization. These resources
abstract from provisioning details such as how a particular wiki is made available (e.g.,
in house on demand deployment via OpenTOSCA vs. external Software-as-a-Service
provisioning) or how human participants become involved (e.g., via an organization
internal OpenSocial-based platform vs. a LinkedIn external business social network).
Resource relationships further specify which resources interact, but not how this inter-
action should be configured collaboration-wise. This concern, in turn, is best modeled
in hADL.

Our approach (Fig. 3) aims at joining high-level hADL structures and low-level
resources within the scope of an IPE model. Rather than directly mapping hADL and
resource elements, our approach foresees their loose coupling via capabilities. hADL
elements reference those capabilities which the ultimately selected resources needs to
be able to fulfill. In contrast, resources specify both their complete capability set (e.g.,
for human-centric resources determined by their skill set), and their correspondingly
required capabilities (to be provided by other resources). Our transformation logic takes
a hADL model, capability definitions, and resources and produces an Informal Process
Essentials (IPE) model. We outline the detailed transformation steps in the following
section (Sec.4).

Fig. 3: Overview of models involved in deploying collaboration structures and their relations.

Ultimately, the IPE model specifies a collaboration structure build from the partic-
ipating resources, goals, and their initial/final contexts. It includes all details required
for deploying and initializing resources upon informal process launch as well as their
release at the end of the respective process. IPE models and corresponding tools (see
Sec.5) thus constitute a realization environment for hADL models.



4 Transformation

The hADL-to-IPE transformation process relies on two complementary user roles. On
the one hand, the transformation principal represents the informal process participant
who drives the transformation for configuring the desired collaboration resources. In our
scenario, one researcher from the lead project organization may assume this role. On the
other hand, resource principals represent IT-level personnel who specify and maintain
entries in the resource repository, capability repository, and hADL repository (see Fig. 5
center). Experts from an in-house IT department or at an external collaboration service
provider typically assume this role.

4.1 Transformation Base Data

Our transformation assumes a bottom-up approach. Resource principals manage re-
source realizations. They utilize resource organizers such as OpenTOSCA for capturing
the details required for instantiating and running resources (recall Section 2). Before a
resource may become part of an IPE model, the resource principals first need to enhance
resources with references to provided and required capabilities.

Resource principals also specify initial, basic hADL models; likewise with respec-
tive mappings to these capabilities. These basic hADL models primarily determine the
structure of collaboration objects including their available actions but not their con-
figuration in an actual informal process. For instance, in the motivating scenario (Sec-
tion 1.1), the External and Internal Wiki (part of the hADL model under design) are built
on top of a Base Wiki structure (from the hADL model repository). With increased use,
the repository may eventually contain complete, specific hADL models depending on
how useful the participants found the deployed configuration upon informal process
completion. The management procedures involving resource principals, however, are
outside the scope of this paper and thus not further discussed.

The transformation process relies on the concept of shared capabilities to bridge the
different levels of abstraction, i.e., hADL and IPE, respectively, resource models. Typ-
ically, resources cannot operate on their own but require additional capabilities (i.e.,
requirements) that are provided by other resources. Resource relationships capture re-
source pairs with matching provided/required capabilities. A Uses Wiki relationship, for
example, binds a Wiki Editor resource (requiring a Wiki capability) to a Wiki resource
(providing a Wiki capability). Resource relationships are first class model elements at
the same level of resources and managed within the resource repository.

Similar to resources, hADL human components, collaboration connectors, and col-
laboration objects reference capabilities. To this end, the capability model (visualized in
Fig. 4) defines a core capability hierarchy for further extensions according to Human-
Component capability, CollaborationConnector capability, and CollaborationObject ca-
pability. Root-level BaseCapabilityProperties and customization thereof specify fur-
ther details (based on hADL actions) needed for collaboration-centric configuration
of domain-specific resources. Specifically, the BaseCapabilityProperties element con-
tains basic hADL actions and/or composite actions. Example action specification refine-
ments thereof include a simple Wiki permission in the former case and a Wiki permis-
sion group in the latter case, both defined within WikiPermissionProperties. The hADL



model utilizes these refinement specifications whenever a human component, collabo-
ration connector, or collaboration object exposes the corresponding capability. A hADL
collaboration object exposing a WikiCapability, for example, may then exhibit simple
Wiki permission actions and Wiki permission group actions. Likewise, the scenario’s
External Expert Editor exposes the WikiEditorCapability capability which in turn relies
on the WikiCapability (via resource relationships), and thus calls for action types from
the WikiPermissionProperties.

Fig. 4: Collaboration-centric capability model (double-edged elements are part of the base model,
single-edged elements constitute extensions).

4.2 Transformation Procedure

The hADL-to-IPE transformation process is semi-automatic. The transformation prin-
cipal needs only become involved for resolving ambiguities, select among multiple
choices, and confirm the final IPE configuration. Fig. 5 displays the ideal sequence
of the various transformation activities, i.e., error handling is omitted for sake of clarity.

The transformation principal engages in the hADL-to-IPE transformation process
by creating a hADL model. The principal selects suitable collaboration objects, human
components, collaboration connectors, and structures thereof from the hADL reposi-
tory. In our motivating scenario, the hADL repository contains the Wiki Base Structure
and basic editor and manager components and connectors. These components and con-
nectors typically exhibit only simple or even no actions but refer to capabilities. The
transformation principals conducts three types of interleaving modeling activities.

– configuring the desired collaboration object configuration through selecting pre-
pared hADL collaboration objects and (where applicable) rewiring their substruc-
tures.

– specifying the actual required component and connectors by copying, aggregating,
creating or refining existing hADL collaborators from the hADL repository (e.g.,
merging a wiki reader with a notification dispatcher).

– linking collaborator actions and object actions, thereby completing the hADL model
instance.



The resulting hADL model components, connectors, and objects exhibit a reference to
their respective provided capabilities only. The required capabilities are automatically
derived from the collaboration links during the Generate IPE Stubs step.

The IPE model determines a capability’s configuration in terms of hADL actions.
Whenever a collaboration object, component or connector contains a substructure, the
specific wiring to subactions, therefore, needs pulling into the super structure. Other-
wise, the information contained in the substructure mapping will be lost. The corre-
sponding Flatten hADL Model step takes the initial hADL model and transforms it into
a new hADL model where each action directly contains its related subactions.

Fig. 5: hADL to IPE model transformation process (dotted lines represent dataflow, full lines
depict control flow).

The Generate IPE Stubs step creates a partial IPE model. The transformation logic
generates an IPE Resource stub for each human component, collaboration connector,
and collaboration object that references a (provided) capability. For instance, in the
motivating scenario, the IPE model consists of stubs for the External Editor, the Wiki
Quality Manager, the External Wiki, the Internal Wiki, etc. A resource stub yet lacks
a reference to an actual, existing resource enacting the respective hADL role in an in-
formal process. Instead, the stub references the provided and required capabilities and
provides their configuration in terms of the respective CapabilityProperties. The Project
Editor resource stub, for example, features an IPE capability specification in the form of
a WikiPermissionProperties element containing all hADL Project Editor actions (i.e.,
EditInternal, EditExternal) by copying them from the hADL model. A hADL link be-
tween a collaboration connector or a human component and a collaboration object im-
plies that the former requires the capability of the latter. The links further define the
precise subset of actions relevant to the requirement specification. Hence, the Project
Editor stub features two IPE requirement specifications, both in the form of a WikiPer-
missionProperties element, each containing the linked hADL actions of the two hADL
wiki objects (Internal Wiki - Editing composite action and External Wiki - Editing com-
posite action).



The transformation logic additionally generates IPE Resource Relationship stubs
based on the links in the flattened hADL input model. Resource relationship stubs de-
scribe which resource (stub) requires what other resource(s) (stubs) within the scope
of the IPE model instance. The resource relationships ensure that ultimately the de-
ployed Project Member resources, Project Editor resources, and Wiki Quality Manager
resources have access to the same Internal Wiki resource, rather than each one hav-
ing access to three separate wikis merely configured to each individual user resource.
The exact relationship type, however, remains undecided as long as the IPE resource
stubs remain without assigned resources from the repository. The concrete resource re-
lationship type between Vandalism Detector and External Wiki depends on whether
the ultimate resource will be software-based (and thus requires access to the Wiki via
a machine API) or human-based (and thus requires access to the Wiki via a human
consumable Web interface).

The Resolve Resource Model step aims to automatically complete the partial IPE
model. The step retrieves all resources from the resource repository that match the given
capability provisioning and capability requirement specification. The capability match-
ing algorithm produces a list of candidate resources for each resource stub. The number
of candidates determines the subsequent options:

– No candidates: When no resource provides a particular capability the transfor-
mation principal needs to go back to the initial hADL modeling step and decide
whether to remove the respective hADL collaboration element, redefine its capa-
bilities, or inform a resource principal to add new or enhance existing resources in
the repository to allow for successful matching.

– Exactly one candidate: The ideal case as no transformation principal intervention
is required.

– Multiple candidates: The transformation principal needs to Select Desired Alter-
natives upon which the control flow returns to the Resolve Resource Model step.
For instance, a VandalismDetectionCapability can be provided by two different
resources, e.g., a human resource or a software analyzer which detects violation
patterns and notifies a users.

Having resolved the IPE resource stubs to concrete resources from the repository,
the Resolve Resource model step commences with resolving the relationships stubs.
During this process, the matching algorithm iterates through all relationship stubs and
extracts compatible concrete relationship specifications candidates from the resource
repository. To this end, the algorithm extracts the concrete resources references in the
relationship stub and analyzes which relationship specification binds such a resource
pair.

Similarly to before, having multiple relationship candidates requires the interven-
tion of the transformation principal. Note that having no candidate for a particular re-
source relationship stub doesn’t necessarily imply the need for restructuring the hADL
model or resource relation specifications but rather having selected incompatible re-
sources. For example, resource relationships in the repository may specify that a hu-
man Vandalism Detector is able to use both MediaWiki and DokuWiki resources while
a software-based Detector is limited to MediaWiki. Hence, when selecting earlier the



software-based Detector resource (for the VandalismDetection capability) and the Doku-
Wiki resource (for the WikiCapability), the algorithm cannot find a concrete relation-
ship. Consequently, the transformation process loops between Resolve Resource Model
and Select Desired Alternatives until either all resource and resource relation stubs are
resolved, or the resource principal aborts the process due to missing or mismatching
resources and resource relationships, respectively.

4.3 Transformation Output Application

The hADL models lack information on the intentions and initial/final context of infor-
mal processes. The transformation principal completes the IPE model with these miss-
ing details in the Finalize Transformation step. This step also gives the resource princi-
pal a last opportunity for checking the generated resource model for completeness and
correctness and adjusting it as needed. After these final manual configurations, the IPE
model is ready for deployment whenever the execution environment matches the initial
process context. For deployment, the various resource organizers obtain the IPE model,
extract the hADL actions from each resource’s capability requirements and capability
provisioning specification for configuring and initializing the actual resource instances.
For example, the WikiPermission actions and WikiPermissionGroup actions determine
directly MediaWiki’s permission configuration file.

5 Case Study based on the OpenTOSCA Ecosystem

We have created a prototype for transformation procedure (all steps except for the first
and last in Fig. 5) on top of our previous work [30] in order to test and validate our
approach (see screenshots in Fig. 6). We realized the prototype as a REST-based web-
service that reuses following specifications and tools: We apply the Topology Orches-
tration Specification for Cloud Applications (TOSCA) [6] for resource deployment.
OpenTOSCA [5] is an open-source container (i.e., resource organizer) for cloud appli-
cations defined in TOSCA. Winery [24] is the corresponding modeling tool for speci-
fying TOSCA-based applications. As TOSCA supports the concepts of capability and
requirements, we use Winery as repository for capabilities, resources, and resource re-
lationships. We defined domain-specific capabilities (in the wikiCap namespace) and
corresponding capability property and action specification (in the wtypes namespace)
for implementing the case study based on the motivating scenario. Due to page con-
straints we only provide some model excerpts in this section. A complete set of XML
schemas, specifications, XSL transformations, input and output models as well as a
proof-of-concept tool is available as supporting online material (SOM) at http://co-
act.biz/downloads.

First, the transformation principal creates the hADL model using a hADL editor
(outside of this paper’s scope). The hADL editor loads the predefined, shared capa-
bilities from Winery. The principal annotates the hADL modeling elements with the
desired capability definitions (in our case those defined in the wikiCap namespace).
The Listing 1.1 presents the hADL XML excerpt for the External Expert Editor from



the motivating scenario Section 1.1. hADL’s extension mechanism enables annotat-
ing each human component, collaboration connector, and collaboration object with
the CapabilityRef elements containing the qualified name of a capability, e.g., wiki-
Cap:WikiEditorCapability (see Listing 1.1 line 3).

1 <hADL:name>External Expert Editor</hADL:name>
2 <hADL:extension>
3 <depl:CapabilityRef>wikiCap:WikiEditorCapability</depl:CapabilityRef>
4 </hADL:extension>
5 <hADL:action id="external-expert-editExt">
6 <hADL:name>edit</hADL:name>
7 <hADL:primitive>CREATE</hADL:primitive>
8 <hADL:primitive>READ</hADL:primitive>
9 <hADL:primitive>UPDATE</hADL:primitive>

10 </hADL:action>
11 </hADL:component>

Listing 1.1: hADL Human Component, XML excerpt

Running the set of XSL transformation and resource resolving steps (see upper right
in screenshot Fig. 6) results in the IPE model (excerpt) in Listing 1.2 (full output avail-
able as SOM). The hADL component in Listing 1.1 becomes an IPE resource (line 1)
consisting of a single provided capability (line 5 to 15), single requirement (line 17
to 37), and single relationship (line 39 to 45).

– the IPE capability segment simply refers to the provided capability (line 6) and a
copy of the only Extern Expert’s action defined in the hADL model.

– The IPE requirement segment references the required Wiki capability (line 17) as
derived through navigating the hADL links. The requirement additionally exhibits
a copy of the linked external wiki’s expert editing action (lines 21 to 35) of type
WikiPermissionSetAction. Note the action’s domain specific element groupName
(line 35) and subactions (line 28 to 33) used to configure the actual Wiki resource
instance upon deployment.

– The IPE resource relationship segment indicates that the IPE resource External
Editor ties to the IPE resource VWiki-Complex (line 43).

The IPE model content explained up to here represents the stub information and
needs completion with actual resources from resource repository. In our case study,
we search through human resources and IT resources in Winery. We converted also
all available human resources to TOSCA NodeTypes and stored them in Winery. We
subsequently iterate through all available human and IT resources. When checking a
resource, we need to ensure that not only all hADL derived capability requirements are
satisfied but also those referenced by the resources in Winery. At last, the relationships
are selected based on the selected resources. In Listing 1.2, the stubs become complete
by adding following resource, respectively relationship reference:

– External Editor specification maps to resource wikiRes:Editor (line 4).
– Relationship to VWiki-Complex maps to resource relationship wikiResRel:edits

(line 40).

The resulting IPE Resource Model (see screenshot in Fig. 6 lower left) provides all
necessary details to realize the desired resource model. In this case, it references cer-
tain TOSCA NodeTypes and RelationshipTypes. During initialization of the respective



model, the resource organizer receives the resource information and executes the neces-
sary domain specific operations. In case of TOSCA resources, first a topology is gener-
ated by converting TOSCA types (i.e., NodeTypes and RelationshipTypes) to TOSCA
templates (i.e., NodeTemplates and RelationshipTemplates). Work of Hirmer et al. [22]
supports the generation of a complete topology. Finally, we end up with a service tem-
plate which contains the application topology. Such service templates can be deployed
on declarative TOSCA containers [12].

1 <ipsm:Resource ipsm:id="MediaWiki.ExternalExpert" ipsm:name="External Expert Editor"
2 ipsm:realizationDomain="http://www.uni-stuttgart.de/opentosca"
3 xmlns:wikiCap="http://www.iaas.uni-stuttgart.de/ipsm/hadl/case-study/tosca/types"
4 ipsm:type="wikiRes:Editor">
5 <ipsm:CapabilityList>
6 <ipsm:Capability ipsm:type="wikiCap:WikiEditorCapability">
7 <ipsm:PropertyList>
8 <hADL:action xmlns:hADL="http://at.ac.tuwien.dsg/hADL/hADLcore"
9 id="external-expert-editExt">

10 <hADL:name>edit</hADL:name>
11 <hADL:primitive>CREATE</hADL:primitive>
12 <hADL:primitive>READ</hADL:primitive>
13 <hADL:primitive>UPDATE</hADL:primitive>
14 </hADL:action>
15 ...
16 <ipsm:RequirementList>
17 <ipsm:Requirement ipsm:requiredCapability="wikiCap:WikiCapability">
18 <ipsm:PropertyList>
19 <hADL:action
20 xmlns:hADL="http://at.ac.tuwien.dsg/hADL/hADLcore"
21 xmlns:wtypes="http://www.iaas.uni-stuttgart.de/ipsm/hadl/case-study/types"
22 id="virtualwiki2-expert"
23 xsi:type="wtypes:tMediaWikiPermissionSetAction">
24 <hADL:name>Expert Editing</hADL:name>
25 <hADL:primitive>READ</hADL:primitive>
26 <hADL:primitive>UPDATE</hADL:primitive>
27 <hADL:primitive>DELETE</hADL:primitive>
28 <!-- subactions from references hADL substructure -->
29 <btypes:SubAction

xmlns:btypes="http://www.iaas.uni-stuttgart.de/ipsm/hadl/base/types"
30 id="page-read" xsi:type="wiki:tMediaWikiPermissionAction">
31 <hADL:name>read</hADL:name>
32 <wiki:permission>read</wiki:permission>
33 </btypes:SubAction>
34 <!-- further subactions -->
35 <wtypes:groupName>expert</wtypes:groupName>
36 </hADL:action>
37 ...
38 <ipsm:RelationshipList>
39 <ipsm:Relationship ipsm:sourceDomain="http://www.uni-stuttgart.de/opentosca"
40 ipsm:type="wikiResRel:edits">
41 <ipsm:TargetResourceList>
42 <ipsm:TargetResource ipsm:targetDomain="http://www.uni-stuttgart.de/opentosca">
43 VWiki-Complex</ipsm:TargetResource>
44 </ipsm:TargetResourceList>
45 </ipsm:Relationship>
46 ...

Listing 1.2: Human Component as an IPE Resource, XML excerpt

Discussion Our case study demonstrates the feasibility of separating collaboration-
level resource configuration and system-level resource deployment of a real-world col-
laboration tool. Transformation principals need not know any technical details of the



Fig. 6: hADL-to-IPE prototype screenshots.

underlying technical infrastructure (here the configuration of MediaWiki software, web
server, database, and hosting environment). The hADL model enables the principal to
quickly perceive which permissions affect what collaboration mechanism (e.g., page,
file, history) of a MediaWiki installation. Having multiple informal process partici-
pants access two wikis with different capabilities exemplifies our framework’s ability
to transform non-trivial, real-world hADL models to IPE models. We believe it’s in the
interest of the reader to keep subsequent deployment details out of this paper’s scope
as we build our case study on top of proven and mature tools and standards such as the
OpenTOSCA container and Winery.

Our approach is applicable to collaboration platforms beyond wikis. The teaching
support platform Moodle, for example, exhibits extensive configurability. Similar to
MediaWiki, it supports the aggregation of collaboration capabilities into custom roles5

and hence would be directly applicable to modeling in hADL and subsequent transfor-
mation to IPE.

5 https://docs.moodle.org/24/en/Creating custom roles



6 Related Work

Web-based platforms, languages, and specifications such as CrowdSearcher [8], Jab-
berwocky [4], CrowdForge [23], or CrowdLang [25] aim at efficiently executing large-
scale human-centric workflows. These approaches focus primarily on achieving suffi-
cient quality at low costs when distributing, collecting, and filtering massive amounts
of tasks. Interaction among task workers is not foreseen; all dependencies are modeled
as task-centric workflow patterns [9]. Brambilla and Mauri integrate social network-
centric actions into web applications via social primitives [11]. Their focus is on public
social platforms (Facebook, Twitter, ...) and thus configuration and deployment of the
collaboration structures remains out of scope.

Recently research efforts started explicitly targeting the integration of social media
into business process management (BPM) technology. Brambilla et al. present design
patterns for integrating of social network features in BPMN [10]. A social network user
may engage in task-centric actions such as voting, commenting, reading a message,
or joining a task. Böhringer utilizes tagging, activity streams, and micro-blogging for
merging ad-hoc activities into case management [7]. Dengler et al. utilize collabora-
tive software such as Wikis and social networks for coordinating process activities [14].
oBPM [20] is an approach for opportunistically modeling business processes in a bot-
tom up manner. It thereby relies on task and artifact abstraction for coordination among
participants. These approaches differ in two crucial aspects from our work: (i) they rely
on a predefined process model, and (ii) they statically integrate social media resources.

The BPM community recognized the need for flexible processes early on [28], dis-
tinguishing among flexibility by design, by deviation, by underspecification, and by
change [29]. Work on process flexibility, however, has the primary focus on the process
specification and not on how to enable executable support for collaboration and coor-
dination among process participants. Even traditional workflow description languages
dedicated to modeling the human involvement such as Little-JIL [13], BPEL4People [1],
or WS-HumanTask [3] foresee no explicit communication among process participants
outside of tasks. Although BPEL4people supports four eyes, nomination, escalation,
and chained execution scenarios; and WS-HumanTask allows attaching comments to
tasks, all interaction is purely task-centric.

In our own recent work [15] we explored the integration of business process and
collaboration patterns but didn’t address ad-hoc collaboration resource deployment nor
the context of informal processes. These informal processes are addressed by different
approaches such as adaptive case management [21] or activity-centric computing [18].
However, these approaches focus primarily on activities and not resources. To this end,
we have proposed a resource-oriented approach [30]. It enables the deployment of the
resources in the context of an informal process context.

7 Conclusion and Outlook

Traditional workflow and activity-centric approaches are inadequate when organiza-
tions need to document and reuse best practices for solving problems of collaborative
nature. Instead, tacit knowledge on suitable collaboration structures and their enactable



informal process models constitute more fitting concepts. To this end, we presented a
novel approach for transforming collaboration-level models (applying the human Ar-
chitecture Description Language) into deployable technical informal processes (rep-
resented in IPE). We introduced the concept of shared capabilities as basis for trans-
formation across different levels of abstraction. We subsequently detailed the various
transformation steps and described their application in the scope of a validating case
study and proof-of-concept tool involving real-world IT resources (i.e., MediaWiki)
and human resources.

Having focused on the technical aspects (models, transformation, tools) in this pa-
per, we are planning for more detailed, validating experiments involving more complex
scenarios that we couldn’t outline here due to page restrictions. These experiments will
provide quantitative measures that serve as evidence on the benefits of our approach.

Acknowledgments This work has been partially supported by Graduate School of
Excellence advanced Manufacturing Engineering (GSaME)6 and by the EU FP7 Smart-
Society project, under Grant No. 600854.

References

1. BPEL4People, http://docs.oasis-open.org/bpel4people/bpel4people-1.1.pdf
2. BPMN 2.0, http://www.omg.org/spec/BPMN/2.0/PDF/

3. WS-HumanTask, http://docs.oasis-open.org/bpel4people/ws-humantask-1.1-spec-cs-01.pdf
4. Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The Jabberwocky Programming Environ-

ment for Structured Social Computing. In: UIST ’11. pp. 53–64. New York, NY, USA (2011)
5. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wagner, S.:

OpenTOSCA - A Runtime for TOSCA-based Cloud Applications. In: Basu, S., Pautasso,
C., Zhang, L., Fu, X. (eds.) ICSOC 2013. pp. 692–695. LNCS, Springer Berlin Heidelberg
(2013)

6. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: Portable Automated Deploy-
ment and Management of Cloud Applications. In: Bouguettaya, A., Sheng, Q.Z., Daniel, F.
(eds.) Advanced Web Services, pp. 527–549. Springer New York (2014)

7. Böhringer, M.: Emergent Case Management for Ad-hoc Processes: A Solution Based on
Microblogging and Activity Streams. In: zur Muehlen, M., Su, J. (eds.) Business Process
Management Workshops. LNBIP, vol. 66, pp. 384–395. Springer Berlin Heidelberg (2010)

8. Bozzon, A., Brambilla, M., Ceri, S., Mauri, A.: Reactive Crowdsourcing. In: WWW ’13. pp.
153–164. International World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, Switzerland (2013)

9. Bozzon, A., Brambilla, M., Ceri, S., Mauri, A., Volonterio, R.: Pattern-Based Specification of
Crowdsourcing Applications. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014.
LNCS, vol. 8541, pp. 218–235. Springer International Publishing (2014)

10. Brambilla, M., Fraternali, P., Vaca, C.: BPMN and Design Patterns for Engineering Social
BPM Solutions. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) Business Process Manage-
ment Workshops. LNCS, vol. 99, pp. 219–230. Springer Berlin Heidelberg (2011)

11. Brambilla, M., Mauri, A.: Model-Driven Development of Social Network Enabled Applica-
tions with WebML and Social Primitives. In: Grossniklaus, M., Wimmer, M. (eds.) Current
Trends in Web Engineering. LNCS, vol. 7703, pp. 41–55. Springer Berlin Heidelberg (2012)

6 http://www.gsame.uni-stuttgart.de/



12. Breitenbücher, U., Binz, T., Képes, K., Kopp, O., Leymann, F., Wettinger, J.: Combining
Declarative and Imperative Cloud Application Provisioning based on TOSCA. In: Proceed-
ings of the IEEE International Conference on Cloud Engineering. pp. 87–96 (2014)

13. Cass, A.G., Lerner, B.S., Jr., S.M.S., McCall, E.K., Wise, A.E., Osterweil, L.J.: Little-
JIL/Juliette: a process definition language and interpreter. In: ICSE 2000. pp. 754–757. IEEE
(2000)

14. Dengler, F., Koschmider, A., Oberweis, A., Zhang, H.: Social Software for Coordination of
Collaborative Process Activities. In: zur Muehlen, M., Su, J. (eds.) Business Process Man-
agement Workshops. LNBIP, vol. 66, pp. 396–407. Springer Berlin Heidelberg (2010)

15. Dorn, C., Dustdar, S., Osterweil, L.J.: Specifying Flexible Human Behavior in Interaction-
Intensive Process Environments. In: Sadiq, S., Soffer, P., Vlzer, H. (eds.) BPM 2014. LNCS,
vol. 8659, pp. 366–373. Springer International Publishing, Haifa, Israel (2014)

16. Dorn, C., Taylor, R.N.: Architecture-Driven Modeling of Adaptive Collaboration Structures
in Large-Scale Social Web Applications. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.)
WISE 2012. LNCS, vol. 7651, pp. 143–156. Springer Berlin Heidelberg (2012)

17. Dorn, C., Taylor, R.N.: Analyzing runtime adaptability of collaboration patterns. Concur-
rency Computat.: Pract. Exper. (2014)

18. Dustdar, S.: ”Caramba Process-Aware Collaboration System Supporting Ad hoc and Collab-
orative Processes in Virtual Teams”. Distributed Parallel Databases 15, 45–66 (2004)

19. Ellis, C., Nutt, G.J.: Workflow: The Process Spectrum. In: Proceedings of the NSF Workshop
on Workflow and Process Automation in Information Systems. pp. 140–145 (1996)

20. Grünert, D., Brucker-Kley, E., Keller, T.: oBPM An Opportunistic Approach to Business Pro-
cess Modeling and Execution. In: Fournier, F., Mendling, J. (eds.) Business Process Manage-
ment Workshops. LNBIP, vol. 202, pp. 463–474. Springer International Publishing (2014)

21. Herrmann, C., Kurz, M.: Adaptive Case Management: Supporting Knowledge Intensive Pro-
cesses with IT Systems. In: Schmidt, W. (ed.) S-BPM ONE - Learning by Doing - Doing by
Learning, CCIS, vol. 213, pp. 80–97. Springer Berlin Heidelberg (2011)

22. Hirmer, P., Breitenbücher, U., Binz, T., Leymann, F.: Automatic Topology Completion of
TOSCA-based Cloud Applications. In: Proceedings of CloudCycle14 Workshops. pp. 247–
258. Bonn (2014)

23. Kittur, A., Smus, B., Khamkar, S., Kraut, R.E.: CrowdForge: Crowdsourcing Complex Work.
In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Tech-
nology. pp. 43–52. UIST ’11, ACM, New York, NY, USA (2011)

24. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – Modeling Tool for TOSCA-
based Cloud Applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) Service-
Oriented Computing. LNCS, vol. 8274, pp. 700–704. Springer Berlin Heidelberg (2013)

25. Minder, P., Bernstein, A.: CrowdLang - First Steps Towards Programmable Human Comput-
ers for General Computation. In: AAAI Workshops (2011)

26. BPEL 2.0, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
27. Russell, N., Aalst, W., Hofstede, A., Edmond, D.: Workflow Resource Patterns: Identifica-

tion, Representation and Tool Support. In: Pastor, O., Falcão e Cunha, J.a. (eds.) CAiSE
2005, LNCS, vol. 3520, pp. 216–232. Springer Berlin Heidelberg (2005)

28. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specifications. In:
S.Kunii, H., Jajodia, S., Sølvberg, A. (eds.) Conceptual Modeling ER 2001. LNCS, vol.
2224, pp. 513–526. Springer Berlin Heidelberg (2001)

29. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., Aalst, W.: Process Flexibility: A Sur-
vey of Contemporary Approaches. In: Dietz, J., Albani, A., Barjis, J. (eds.) Advances in
Enterprise Engineering I, vol. 10, pp. 16–30. Springer Berlin Heidelberg (2008)

30. Sungur, C.T., Binz, T., Breitenbücher, U., Leymann, F.: Informal Process Essentials. In:
EDOC 2014. pp. 200 – 209. IEEE (2014)


